NRT/KS/19/2233

Bachelor of Computer Application (B.C.A.) Semester—IV Examination THEORY OF COMPUTATION

Paper—III

Tim	e : Tł	mee Hours] [Maximum Marks :	50
Not	e :—	(1) All questions are compulsory and carry equal marks.	
		(2) Draw neat and labelled diagrams wherever necessary.	
	EIT	HER	
1.	(A)	Prove that if L is a set accepted by NFA, then there exists a DFA that accepts L.	5
	(B)	Explain Moore machine and Mealy machine with suitable example.	5
	OR		
	(C)	Give Deterministic Finite Automata over the alphabet $\{0, 1\}$ accepting the language as, the set of strings ending with 00.	all 5
	(D)	What are the applications of finite automata ? Explain.	5
	EIT	HER	
2.	(A)	Define Context Free Grammar (CFG). Give the CFG generating the set of palindromes over the alphat $\{a, b\}$.	bet 5
	(B)	Prove that the class of regular sets are closed under Union, Concatenation and Kleene closure.	5
	OR		
	(C)	Explain the terms :	
		(i) Derivation trees.	
		(ii) Useless symbol.	5
	(D)	Show that $L=\{0^n 1^n n \ge 1\}$ is not regular.	5
	EIT	HER	
3.	(A)	State and prove pumping lemma for context free languages.	5
	(B)	Define Chomsky Normal Form (CNF). Find a grammar in CNF equivalent to $S \rightarrow aAb A \rightarrow aA a, B \rightarrow bB b$.	В, 5
	OR		
	(C)	What is Greibach Normal Form (GNF)? Explain with suitable example.	5
	(D)	Prove that context free languages are not closed under intersection and complement.	5

EITHER

(A) Define deterministic PDA. 4. Construct a PDA for : $L = \{ 0^n \ 1^{2n} | n \ge 1 \}.$ 5 5 (B) If L is a context free language then prove that three exits a PDA such that L = N(M). OR (C) Construct PDA for the language, $L = \{WW^R | W \text{ in } (a+b)^*\}$ 5 5 (D) Give the informal description of Push Down Automata. 5. (A) What is DFA? Explain with suitable example. 21/2 (B) What is Ambiguity in context free grammar? Explain. 21/2 (C) Prove that context free languages are closed under Substitution. 21/2 (D) What do you mean by Non-deterministic Push Down Automata? Explain. 21/2

NJR/KS/18/3233

Bachelor of Computer Application (B.C.A.) Semester—IV (C.B.S.) Examination THEORY OF COMPUTATION

Paper-III

Time : Three Hours] [Maximum Marks : 50		
	N.B	3.: (1) All questions are compulsory and carry equal marks.
		(2) Draw neat and labelled diagrams wherever necessary.
4	EIT	HER
1.	(a)	Define and explain deterministic finite automata with example. 5
	(b)	If $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is the DFA constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction, then prove : $L(D) = L(N)$. 5
	OR	
	(c)	Give a DFA over the alphabet {0, 1} accepting languages as the set of strings with 011 as a substring. 5
	(d)	Write regular expression for the language in which the set of strings of 0's and 1's where 0's are divisible by 5 and whose number of 1's are even. 5
	EIT	HER
2.	(a)	State and prove pumping lemma for regular set. 5
	(b)	Define CFG for the language such as :
		The set of $\{0^n1^n \mid n \ge 1\}$, that is the set of all strings of one or more 0's followed by an equal number of 1's. 5
	OR	
	(c)	Show that every regular language is context-free language. 5
	(d)	Consider the CFG G defined by productions : $S \rightarrow aS Sb a b$. Construct the language $L(G)$
		that does not have "ba" as a substring. 5
	EIT	HER
3.	(a)	Define Chomsky Normal Form (CNF) and convert following CFG into Chomsky Normal Form :
		$S \rightarrow AbA$
		$A \rightarrow Aa/\epsilon$.
	(b)	Explain pumping lemma for CFL's. 5
	OR	
	(c)	Define Greibach Normal Form (GNF). Convert following grammar G into GNF
		$S \rightarrow XA BB, B \rightarrow b SB, X \rightarrow b, A \rightarrow a.$ 5

(d) Prove any context-free language is generated by a context-free grammar in Chomsky Normal Form.

rtmnuonline.com EITHER

4.	(a)	Define PDA and give instantaneous description of PDA.	5
	(b)	Design PDA for :	
		$\mathbf{L} = \{ 0^{n} 1^{n} \mid n \ge 0 \}.$	5
	OR		
	(c)	Prove that PDA and CFGs are equivalent.	5
	(d)	Design the PDA for palindrome string of alphabets {0, 1}.	5
5.	Atte	empt ALL :	
	(a)	What is regular expression ?	21/2
	(b)	Give the derivations of decision tree.	21/2
	(c)	Write closure properties of CFL.	21/2
	(d)	Draw a diagram for Push Down Automata.	21/2
		DOIL	
		ADD	
		AN AL	
		A	

WWW.HIMMONINE.COM

5. Attempt ALL	:
----------------	---

(a)	Define two-way finite automata.	21⁄2
(b)	What is Regular Set ?	21⁄2
(c)	What is ambiguous grammar ?	21⁄2
(d)	Define PDA.	21⁄2

TKN/KS/16/5977

 Bachelor of Computer Application (B.C.A.)

 Semester—IV (C.B.S.) Examination

 THEORY OF COMPUTATION

 OPaper—III

 Time—Three Hours]
 [Maximum Marks—50]

 Note :— (1)
 All questions are compulsory and carry equal marks.

 Multiple
 [2]

 Draw neat and labelled diagram wherever necessary.

EITHER

- 1. (a) Build a DFA for the following language.
 - $L = \{w \mid w \text{ is a binary string that contains 01 of} \\ a \text{ substring}\} 5$
 - (b) Define NFA and prove equivalence of DFA and NFA. 5

OR

(c) Build a DFA for the following language over the alphabets {0, 1} : of the set of all strings such that each block of five consecutive symbols contains at least two 0's.

1

MXP-O-4108

4

825

www.thmitonline.com

MXP-O-4108

(Contd.)

(d) Construct DFA for the following NFA :

	0	1
$\rightarrow p$	$\{p, q\}$	{p}
q	{ r }	{ r }
r	{s}	φ
*S	{s}	{s}

5

EITHER

- (a) State and prove the theorem of pumping lemma 2. for regular set. 5
 - (b) Prove the context free grammar accepts the word palindrome over the alphabets {0, 1}. 5

OR

- (c) Explain the closure properties of regular set.
- (d) Define CFG and give applications of CFG and CFL. 5

EITHER

3. (a) Explain the process of eliminating useless symbols from CFG. 5

MXP-O-4108 2 (Contd.) (b) Define CNF. Convert following grammar into CNF:

$$S \Rightarrow AS \mid BABC$$

$$A \Rightarrow A1 \mid 0A1 \mid 01$$

$$B \Rightarrow 0B \mid 0$$

$$C \Rightarrow 1C \mid 1$$

$$GR$$
(c) Define GNF and closer properties of CFL. 5
WHY (d) Explain pumping lemma for CFG. 5
EITHER
4. (a) Design a PDA for $L_{ww}R$. 5
(b) Convert the grammer

$$S \rightarrow 0S1 \mid A$$

$$A \rightarrow 1A0 \mid S \mid \in$$
to a PDA that accepts the same language by empty
stock. 5
OR
(c) Give the instantaneous description of PDA. 5

(d) Explain the process of converting grammar to PDA. 5

3

```
MXP-O-4108
```

4.

(Contd.)

Bachelor of Computer Application (B.C.A.) Semester—IV (C.B.S.) Examination THEORY OF COMPUTATION

Paper-III

Time : Three Hours]

[Maximum Marks : 50

N.B. :— (1) ALL questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagrams whenever necessary.

EITHER

- (a) What is Finite Automata ? Construct a NFA accepting all strings in {a, b}⁺ with either two consecutive a's *or* two consecutive b's.
 - (b) Explain the construction of NFA with E-transition from any given regular expression. 5

OR

(c) Explain the steps in conversion of NFA to DFA. Convert the following NFA to DFA. 5

	(d)	Explain Finite Automata with output.	5
	EIT	THER	
2.	(a)	Explain the closure properties of regular set with example.	5
	(b)	Explain Derivation Tree in detail.	5
	OR		
	(c)	Find whether the languages :	
		{ww ^R , w is in $(1+0)^*$ } is regular <i>or</i> not.	5
	(d)	Explain Decision Algorithm for Regular sets.	5
NXO	—200	92 1	(Contd.

EITHER

(b)		
	Explain the process of eliminating useless symbols from CFG.	5
OR		
(c)	Explain Greibach Normal form with suitable example.	5
(d)	Explain closure properties of context free language.	5
EIT	HER	
(a)	Discuss about PDA acceptance :	
	(i) From empty stack to final state.	
	(ii) From final state to empty stack.	5
(b)	Define a PDA. Give an example for a Language accepted PDA by empty stack.	5
OR		
(c)	Construct PDA for language :	
	$L = {ww^{R}/w \text{ in } (a+b)^{*}}.$	5
(d)	If L is context free language then prove that there exists PDA M such that $L = N$ (M).	5
Atte	mpt ALL :	
(a)	Explain two way finite automata.	21/2
(b)	Define parse tree.	21/2
(c)	Explain pumping lemma for context free language.	21/2
(d)	Give formal definition of a PDA.	21/2
	OR (c) (d) EIT (a) (b) OR (c) (d) Atte (a) (b) (c) (d)	 OR (c) Explain Greibach Normal form with suitable example. (d) Explain closure properties of context free language. ETTHER (a) Discuss about PDA acceptance : (i) From empty stack to final state. (ii) From final state to empty stack. (b) Define a PDA. Give an example for a Language accepted PDA by empty stack. (c) Construct PDA for language : L = {ww^R/w in (a+b)*}. (d) If L is context free language then prove that there exists PDA M such that L = N (M). Atternyt ALL : (a) Explain two way finite automata. (b) Define parse tree. (c) Explain pumping lemma for context free language. (d) Give formal definition of a PDA.

KNT/KW/16/5266

Bachelor of Computer Application (B.C.A.) Semester-IV (C.B.S.) Examination THEORY OF COMPUTATION

Paper-III

Time : Three Hours]

[Maximum Marks : 50

5

N.B. :— (1) ALL questions are compulsory and carry equal marks.

(2) Draw neat and well labelled diagrams wherever necessary.

EITHER

(A) Find the regular expression for the following finite automata : 1.

(B)	Prove that : Let L be a set accepted by NFA. Then there exist DFA that accepts L.	5
OR		

0	R

2.

(C)	Explain two-way finite automata.	5
(D)	Construct NFA for the regular expression $01^* + 1$.	5
EIT	THER MILITY	
(A)	Define :	
	(i) Transitive closure of R	
	(ii) Reflexive and transitive closure of R.	5
(B)	Define CNF. Find a grammar in CNF equivalent to :	
	$S \rightarrow aAbB$	
	$A \rightarrow aA/a$	
	$B \rightarrow bB/b$	5
OR		
(C)	State the Pumping lemma for regular set. What are its applications ?	5
(D)	Show that $L = \{0^i \ 1^i \mid i \ge 1\}$ is not regular.	5

NVM-5481

(Contd.)

EITHER

3.	(A)	Show that the following language is not context free,	
		$L = \{a^n b^n c^n \mid n \le m \le 2 n\}.$	5
	(B)	(i) Chomsky Normal Form	
		(ii) Greibach Normal Form.	5
	OR		
	(C)	Explain pumping lemma for C & G.	5
	(D)	Prove any two decision properties of context free languages.	5
	EIT	HER	
4.	(A)	Explain push down Automata.	5
	(B)	Construct a PDA accepting $L = \{W \subset W^T/W \in \{a, b\}^*\}$ by final state.	5
	OR	W. W.	
	(C)	Prove that context free languages are closed under union.	5
	(D)	Prove that for every CFL, there exists an equivalent push down automata.	5
5.	(A)	Explain the role of finite automata in Lexical Analyser.	21/2
	(B)	Explain Derivation trees.	21/2
	(C)	What is ambiguous grammar.	21/2
	(D)	Design a PDA accepting $\{0^n 1^{2n} n \ge 1\}$ by empty stack.	21/2
		WWW.HITTING	

Bachelor of Computer Application (B.C.A.) Semester–IV (C.B.S.) Examination THEORY OF COMPUTATION Paper—III

		Tuper III	
Time	e : T	hree Hours] [Maximu	m Marks : 50
N.B.	. :—	 (1) ALL questions are compulsory and carry equal marks. (2) Draw neat and labelled diagram wherever necessary. 	
	EIT	HER	
1.	(a)	Design a finite automata accepting string "110101" over the alphabets $\{0, 1\}$.	5
	(b)	Let R be a regular expression. Prove that there exists an NFA with \in transition that ac	cepts L(r). 5
	OR		
	(c)	Let L be accepted by a non-deterministic finite automata. Prove that there exists a deterministic finite automation that accepts L.	rministic finite 5
	(d)	Write a regular expression for the language having set of all strings with equal number	of 0s and 1s. 5
	EIT	HER	
2.	(a)	Prove that regular sets are closed under intersection.	5
	(b)	Explain principle of pumping lemma for regular set.	5
	OR		
	(c)	Justify the set of all strings that do not have three consecutive 0's is regular set or not.	5
	(d)	Prove that the class of regular set is closed under complementation.	5
	EIT	HER	
3.	(a)	Consider a grammar :—	
		$\mathbf{G} = (v, \mathbf{T}, \mathbf{P}, \mathbf{S})$ where	
		$v = \{S\} \text{ and } P = \{S \rightarrow aSb, S \rightarrow ab\}.$	
		Give the language generated by this.	5
	(b)	Explain pumping lemma for context free grammar.	5
	OR		
	(c)	Explain closure properties of CFL.	5
	(d)	Write a note on Greibach normal form.	5
	EIT	HER	
4.	(a)	Prove that every context free language is accepted by same push down automation.	5
	(b)	What are the properties of context free language ?	5
	OR		
	(c)	Give the informal description of Push Down Automata.	5
	(d)	Prove $L = \{a^n b^n c^n : n \ge 0\}$ it not context free.	5
5.	Atte	mpt all :—	
	(a)	Define two-way automata.	21/2
	(b)	What is Regular set ?	21/2
	(c)	What is context free grammar ?	21/2
	(d)	Define Push-Down Automata.	21/2

NIR/KW/18/2233

Bachelor of Computer Application (B.C.A.) Semester—IV Examination THEORY OF COMPUTATION

Paper—III

Time : Three Hours]

[Maximum Marks : 50

N.B. :— (1) All questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

- 1. (A) Give DFA accepting a language over the alphabet {0, 1} for set of all strings ending in 00.
 - (B) Let L be a set accepted by a non-deterministic finite automata. Then prove that there exists a deterministic finite automation that accepts L. 5

OR

(C) Construct regular expression corresponding to the state diagram :

(D) Explain Finite Automata with output.

EITHER

- 2. (A) Show that $L = \{O_i^{i^2}/i \text{ is an integer, } i \ge 1\}$ is not regular.
 - (B) Prove that regular sets are closed under intersection.

OR

- (C) Give a CFG generating the set of all strings over alphabet {a, b, ⋅, +, *, (,), ∈, φ} that are well formed regular expression over alphabet {a, b}.
- (D) What is leftmost derivation, rightmost derivation and ambiguous grammar ? Illustrate using example. 5

EITHER

- 3. (A) What is unit production and \in -production ? State the Chomsky Normal Form. 5
 - (B) Find Greibach Normal Form grammar equivalent to the following CFG :

$$S \rightarrow AA/0$$

 $A \rightarrow SS/1$ 5

OR

- (C) State pumping Lemma for CFG. Show that $L = \{a^i b^i c^i / i \ge 1\}$ is not context free language.
- (D) Prove that context-free languages are closed under union and concatenation.

5

5

5

5

5

5

5

rtmnuonline.com EITHER

4.	(A) Define – Deterministic PDA with example.	5
	(B) Construct PDA that accepts {WCW ^R /W in $(0 + 1)^*$ } by empty stack.	5
	OR	
	(C) Construct PDA equivalent to the following grammar :	
	$S \rightarrow aAA$	
	$A \rightarrow aS/bS/a$	5
	(D) Explain the conversion of PDA to grammar.	5
5.	Attempt ALL :	
	(A) Prove that identity :	
	(i) $r + s = s + r$	
	(ii) $(r^*)^* = r^*$	21/2
	(B) What are regular sets ?	21/2
	(C) Give grammar for set of palindromes over alphabet {a,b}.	21/2
	(D) For a PDA, define a language accepted by final state.	21/2
	A A A A A A A A A A A A A A A A A A A	

WWW.HIMMONINE.COM